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SECTION A

NONLINEAR INTERACTIONS IN SUPERFLUID DYNAMICS:
SUPERCRITICAL COUNTERFLOW AND SHOCKWAVES

I. INTRODUCTION

With the present final report the AFOSR support for the GALCIT research
on liquid helium fluid dynamics terminates. The three sections included here
describe the work done during the last contractual period up to September 30,
1978.

It was the purpose of the program to investigate some aspects of the fluid
mechanics of LHell, in particular nonlinear phenomena such as turbulence and
shock waves and their effect on the critical conditions in Hell.

The major accomplishments which resulted from this GALCIT research program
are listed below. The larger part of the work was supported by contracts from
AFOSR which are gratefully acknowledged. A list of publications is included
with the report.

II. PRINCIPAL ACCOMPLISHMENTS

1. The development of the first cryogenic shock tube for the production
of strong shock waves. In this small (1" diameter) tube, shock Mach numbers of
M = 42 in Helium gas have been reached. The cooling effect on density and vis-
cosity is such that the Reynolds number of the tube is very high and boundary
layer displacement effects in the shock wave propagation negligible. Indeed,
to obtain similar Reynolds number at room temperature a tube about 1000 times
the present tube diameter would be required. (Of course, a tube at room temper-
ature would be restricted to relatively low Mach numbers because of real gas
effects, e.g., ionization.) The potential use of this cryogenic shock tube has
not nearly been exhausted. To mention only one, a recent possibly important
application would be the study of wall ablation in the wake of very strong
shocks, suggested by problems arising from the MX development.




2. The extension of the cryogenic tube techniques to work with liquid
Helium II Ted to the first careful mapping of the nonlinear wave diagrams in
He II, involving both first sound and second sound shock waves. These measure-
ments permit the first rational comparison of theory and experiment for nonlinear
flow phenomena in LHe.

3. Ultra-second sound waves with frequencies up to 1 MHz have been used
as a velocimeter for He II counterflow. The first recorded observations of
turbulent-like velocity fluctuations was carried out here using this technique.
This work was made possible by the development of superconducting temperature

sensors with 10'8 2

K sensitivity. Possible application to IR detection is clear.
Indeed, this second sound technique permitted the first direct measurements of
a flow velocity in He II.

4. A similarity rule was developed based on the two-fluid equation with
the additional Gorter-Mellink terms. This rule permits the reduction of all
known critical heat flow experiments in capillaries and tubes to a single number
reminiscent of a critical Reynolds number for laminar-turbulent transition in
classical fluid mechanics.

5. Critical counterflow velocities and hence critical heat flow two orders

of magnitude larger than previously reported for similar geometries have been

measured in the wake of second sound shock waves.
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GALCIT Publications on Liquid Helium

and Cryogenic Fluid Mechanics

J. E. Broadwell and H. W. Liepmann, Local Boiling and Cavitation
in ileat-Induced Counterflow of He II, Physics of Fluids 2, 8,
August 1969.

P. E. Dimotakis, Investigation of Supercritical Heat Flow in
Helium II, Ph.D. Thesis, California Institute of Technology
October 1972.

V.C. Rupert, Experimental Study of Shock Wave Strengthening by
a Positive Density Gradient in a Cryogenic Shock Tube, Ph.D.
Thesis, California Institute of Technology, May 1972.

H. W. Liepmann, J.C. Cummings, and V.C. Rupert, Cryogenic
Shock Tube, Physics of Fluids 16, 2, February 1973.

P. E. Dimotakis and J. E. Broadwell, Local Temperature Measure-
ments in Supercritical Counterflow in Liquid Helium II, Physics of
Fluids 16, p. 1787, November 1973.

J.C. Cummings, I. Development of a Cryogenic Shock Tube,
II, Experimental Investigation of the Interaction of a Shock Wave
with Liquid Helium I & II. Ph.D. Thesis, California Institute of
Technology, May 1973.

H.W. Liepmann, Cryogenic Fluid Mechanics, Recent Developments
in Shock Tube Research, Daniel Bershader and Wayland Griffith,

Editors, Stanford University Press, July 1973.

J.C. Cummings, Development of a High-Performance Cryogenic
Shock Tube, J. Fluid Mech. v. 66, part 1, pp. 177-187 (1974).

V. C. Rupert, Experimental Study of Shock Wave Strengthening by
a Positive Density Gradient in a Cryogenic Shock Tube, Physics of
Fluids 17, 9, September 1974.

P. E. Dimotakis, Gorter-Mellink Scale, and Critical Velocities in
Liquid-Helium-II Counterflow, Physical Review A, v. 10, No. 5,
November 1974.

G. Laguna and P.E. Dimotakis, Second Sound Attenuation in a
Counterflow Jet, APS Bulletin 19, 1161 (1974).

G. Laguna and A. Lidow, Shock Waves in Liquid Helium, APS
Bulletin 19, 1962 (1974).

G.A. Laguna, Second Sound Attenuation in a Liquid Helium Counter-
flow Jet, Ph.D. Thesis, California Institute of Technology, March
1975.

H. W. Liepmann, Fluid Dynamics of Liquid Helium, SIAM J. Appl.
Math. 28, No. 3, May 1975.
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G. Laguna, Second Sound Attenuation in a Supercritical Counterflow
Jet, Physical Review B, 12, 11, December 1975,
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SECTION B

EXPERIMENTAL INVESTIGATICN OF FIRST- AND SECOND-SOUND
SHOCK WAVES IN LIQUID HELIUM II

I. INTRODUCTION

An important aspect of the ligquid helium research performed
at GALCIT began with the initial investigations by Cummings (1973,
1976) of the production and propagation of finite-amplitude dis-
turbances--shock waves--in Liquid Helium II (LHeII). Current
efforts include attempts to both refine and expand upon these
initial measurements.

Using the two-fluid equations (Landau 1941) for the hydro-
dynamics of helium II, Khalatnikov (1952, 1965) has derived ex-
pressions governing the propagation of weak shock waves by con-
sidering terms up to second order in the relative velocity w
between the normal fluid and superfluid (w = ;6 - ;; ). The
present experiments involve the development of techniques which
make it possible to assess the accuracy of Khalatnikov's predic-

tions and to estimate the magnitude of the temperature discon-

tinuities associated with shock waves in LHelIlI.

II. EXPERIMENTAL APPARATUS AND PROCEDURE

Cryogenic Shock Tube
The l=-inch diameter cryogenic shock tube (Liepmann, Cummings,
& Rupert 1973; Cummings 1973, 1974), shown in Figure 1, is used
to generate a gasdynamic shock which propagates through saturated
helium vapor and subsequently reflects from the upper surface
of a column of LHeIl at the lower end of the test section. A

gasdynamic shock produces jumps in temperature and pressure which
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are functions only of the shock Mach number. These well-defined
jumps provide initial conditions for the production of shocks
in the liquid. Beginning with a measurement of the Mach number
of the incident gasdynamic shock, one can use the shock jump
relations for an ideal gas and the Khalatnikov model for weak
shocks in LHeII, together with matching conditions for pressure
and velocity at the vapor-liquid interface, to predict wave tra-
jectories in the liquid. These theoretical trajectories may
then be compared to experimentally observed values.
x-t Diagrams

The reflection of a gasdynamic shock from the vapor-liquid
interface results in a complicated set of finite-amplitude waves
whose trajectories are best illustrated by the wave diagram shown
in Figure 2. In this diagram, the arrival time of the waves,
t, is plotted as a function of position, x. The arrival of the
incident gas shock at the liquid surface results in a reflected

gasdynamic shock with velocity U and produces two transmitted

R’
shocks which propagate into the liquid. One of these shocks

is a pressure, or first-sound, shock with velocity Cl(O): the
other shock is a temperature, or second-sound, shock with velo-
city 02(6). Compression of the liquid by the pressure shock
results in a bulk fluid velocity, ug. which is evidenced by the
motion of the vapor-liquid interface. The pressure shock is
reflected from the solid endwall and returns to the liquid sur-
face where it is re-reflected as an expansion in the liquid and
produces a transmitted gasdynamic shock in the vapor. The re-
flected and re-reflected pressure waves in the liquid interact

with the temperature shock and produce changes in the bulk fluid

velocity.




Detector Array
The current experiments involve the accurate measurement 1
of the arrival times of the various waves at detectors located
at different heights above and below the liquid surface. Two
types of detector are used. Side-mounted, carbon-card detectors,
similar to those used in the original work of Cummings, are used
to measure the arrival of the incident and reflected gasdynamic
shocks. To measure the arrival of either the incident gas shock
in the vapor, or the arrivals of the various waves in the liquid,
superconducting thin-film gages have been developed to replace 1
the carbon-flake detectors used by Cummings. The new gages are
produced by evaporation of aluminum in an oxygen atmosphere and i

are located on the tips of pyrex rods which project upward from

the shock tube endwall. The overall array of detectors repre- ;
sents a blockage of 13% of the cross-sectional area of the shock
tube.

The superconducting gages afford major improvements in fre-
quency response and sensitivity over previous detectors. Sensi-
tivities as high as 0.1 to 1.0 V/OK and frequency response on
the order of 1.0 MHz have been achieved. The high sensitivity
of the present gages is evidenced in Figure 3 which shows the
voltage drop across a film as a function of temperature. Each
curve in Figure 3 represents the superconducting transition for
a different value of externally-applied magnetic field. By in-
creasing the magnetic field, the transitions are biased to lower
temperatures. For a given set of shock tube runs, the external
magnetic field is adjusted such that the mid-transition point
of the films corresponds to the desired initial temperature and

pressure. For the film calibration shown in Figure 3, the mid-




transition sensitivity is seen to vary from 0.13 v/°K for the
highest transition temperature to 0.039 V/°K for the lowest tran-
sition temperature.
Liquid Level Detection

The high sensitivity of these films provides the previously
unrealized ability to accurately determine the liquid level in
the shock tube prior to actually firing the shock. This new
level detection scheme involves the generation of a second-sound
pulse at the endwall and the subsequent measurement of the time
of flight of the pulse from a submerged superconducting film
to the free surface and back to the film. Knowledge of the sec-
ond-sound wave speed and the height of the detector above the
endwall then permits straightforward calculation of the liquid
level. Figure 4 shows a typical pair of oscilloscope traces
obtained during a level-detection run. In this case, the free

surface of the liquid is 44 mm above the endwall; film#3 is 38 mm

above the endwall; and film#

4 is 34 mm above the endwall. The
passages of the upward-travelling pulse and the returning reflec-
tion are clearly evident in each trace.
Detector Response

Typical outputs from the present set of shock tube detec-
tors following the actual firing of a gasdynamic shock are shown
in Figures 5 and 6. The upper two traces in Figure 5 show the
response of two superconducting gages which were initia®ly above
the ligquid surface to the passage of the incident gasdynamic
shock. The bottom trace in Figure 5 shows the response of the
carbon-card detector to the passage of the incident and reflected

gasdynamic shocks. The traces shown in Figure 6 correspond to

the outputs of two superconducting films initially located below
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the liquid surfuce¢. The film"3 output indicates the sequential

arrival of the incident pressure shock, temperature shock, re-
flected pressure shock, and re-reflected expansion. Film#4,
which was initially located somewhat further below the liquid
surface than film#3, indicates the sequential arrival of the
incident pressure shock, reflected pressure shock, re-reflected
expansion, and temperature shock. The detector signals quali-
tatively verify theoretical predictions that, within the super-

fluid, the temperature decreases through the pressure shock and

increases through the temperature shock.

I1I. EXPERIMENTAL RESULTS AND OBSERVATIONS

X =T Diagrams
Sets of photographs similar to those shown in Figures 5
and 6 are taken for a variety of liquid depths at a given sat-
uration pressure and temperature. Arrival time data obtained
from these photographs then permits the construction of x~-t dia-
grams by use of the similarity parameters y and T given by:

L - x
L

X

=t ; I  (usec/cm)

where x = height above endwall (cm)
t = arrival time (usec)
L = initial liquid depth (cm)
T = arrival time of incident gasdynamic
shock at liquid surface (usec)
At the present time accurate ¥ ~-T diagrams have been construc-

ted for seven initial liquid temperatures and pressures. These

diagrams are shown in Figures 7-13 for the cases T1 = 1,522,

1.665, 1.751, 1.832, 1.989, 2.031, and 2.095°K, respectively.
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The Mach number of the incident gas shock ranged from MS = 13.0

for the case ?i = 1.522°K, to Eé = 6.52 for the case ?i = 2.095°K.

All of the diagrams clearly indicate arrival time data for the

various waves discussed earlier. Excellent repeatability of

the arrival time measurements is evident in eachy - T diagram.

Linear fits to the data indicate standard deviations in experi-

mentally measured velocities on the order of one to two percent.
Wave Velocities

Figure 14 is a comparison of experimental wave velocities
obtained from the'x-ﬂ'meésurements to theoretical velocities
computed on the basis of the strength of the incident gas shock.
As mentioned earlier, the theoretical computations treat the
vapor as an ideal gas and assume that the propagation of a first-
sound shock is adequately modeled by Khalatnikov's second-order
theory. The theoretical velocity of a second-sound shock in
a particular region is taken to be equal to the sum of the bulk
fluid velocity of that region and the second-sound velocity cor-
rected for the region pressure.

In Figure 14, the ratios of experimentally observed velo-
cities to theoretical velocities are shown. Good agreement be-
tween theory and experiment is obtained for the incident pres-
sure shock velocity, Cl(O). Measurements of the reflected pres-
sure shock velocity, C1(6)' and the temperature shock velocity,
c2(6), are low and exhibit decreasing agreement with theory as
the initial temperature and pressure are increased. The bulk
fluid velocity, ug = ug, is obtained from the experimental data
by taking the inverse slope of the line connecting the origin

of the X-T diagram to a point corresponding to the intersection

of the reflected pressure shock data with the re-reflected ex-
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pansion data. The resultant values obtained for ug = ug deviate
significantly from'theory-—they are 30-58% low for the cases
examined.
Phase Diagram

The initial conditions for each set of X -T measurements
and the subsequent states of the liquid following the passage
of the pressure waves are best illustrated by the phase diagram
shown in Figure 15. Each run starts with the liquid-vapor sys-
tem in equilibrium along the saturated vapor curve. The inci-
dent pressure shock raises the pressure of the liquid to Pg -
the reflected pressure shock increases the pressure still fur-
ther to Py, and the re-reflected expansion reduces the pressure
to Pg- To first order it is assumed that there is no tempera-
ture change across these waves.

Phase Transitions

From the phase diagram, it is apparent that for initial
conditions sufficiently close to the lambda transition the pres-
sure jump across either the incident pressure shock or reflected
pressure shock is su“ficient to cause a change in phase of the
liguid from'LHeII to LHelI. This predicted change in phase has
been experimentally evidenced by detector outputs indicating
the disappearance of temperature shocks in the wakes of sufficient-
ly strong pressure shocks. For the case of ?& = 2.095°K, shown
in Figure 13, the X -T measurements indicate the disappearance
of the temperature shock following the passage of the incident
pressure shock through the liquid. This result is significant
and indicates that the transition from LHeII to LHeI occurs within

the propagating pressure shock.

Observation of the phase diagram also indicates the possi-




i

| ARETTSeRRRA Y iva

P s il sttt e —— e

=12~

bility of firing gasdynamic shocks of sufficient strength to
drive the state of the fluid across the melting line into the
s0lid region from either the LHeII or LHel region. Experiments
of this nature would involve straightforward modification of the
present apparatus to achieve significantly higher driver pressures,
Py than the present range of P, = 4-5 Atm. For Pg to exceed
the melting pressure, initial estimates indicate required values
of P, greater than 30 Atm for To - Xy - 2.10°K, or greater than
45 Atm for ™ 1.65°K. If the reflected pressure shock is in-
stead relied upon to produce values of P, that surpass the melt-
ing pressure, the minimum requirement for P, drops to roughly
10 Atm. Optical techniques may be employed for investigatiomns
of condensation phenomena associated with strong pressure shocks.
Temperature Jumps & Relative Velocity Estimates

Referring to Landau and Lifshitz (1959, p. 519), the rela-

tive velocity produced by passage of a first-sound wave may be

expressed to first order in the temperature jump as

w = vV =V = BE___ Ap
" % pnclo
where s = entropy
p = density
by - normal fluid demsity

C10 = first-sound wave sp=ed

AT = temperature jump
In the present set of measurements, values of AT ~ -30 X 1073 °x,
which correspond to w ~ -0.15 m/sec, were obtained for the inci-
dent pressure shock.

In the case of second-sound shocks, Khalatnikov (1965, p. 83)

has written
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=N ES
w = AT
PnC20

where C20 = second-sound wave speed
Using side-mounted aluminum oxide films for the case T; = 1,788°K,

-3 oK for the second-

shock tube measurements indicate AT = 25 x 10
sound shock produced by reflection of a gasdynamic shock from

the free surface of the liquid. This temperature jump corresponds
to w = 2.2 m/sec--a value which agrees well with critical velo-
city measurements of w, - 2.51 m/sec obtained using temperature
shocks produced by delivering electrical pulses to a thin-film
heating element (Rogers 1978). These values of w, are two or-

ders of magnitude larger than those reported for steady channel

flow (e.g., see Dimotakis 1974).

IV. CONCLUSIONS

The experimental work reported here demonstrates the de-
velopment of instrumentaﬁion and techniques suitable for mak-
ing accurate and repeatable measurements of shock arrival times
and estimates of shock-induced temperature jumps in LHeII., Ar-
rival time measurements indicate consistent discrepancies be-
tween theoretical predictions and experimental results for ug
and the wave trajectories. The discrepancies may be related
to shortcomings of Khalatnikov's second-order theory or to mass-
transfer effects at the vapor-liquid interface. These possibili-
ties are being further examined. Measurements of temperature
jumps associated with first-sound shocks show approximate agree-
ment with theoretical predictions. Experimental measurements of
temperature jumps associated with the coupled second-sound shock

indicate limitation of the magnitude of the temperature discon-
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tinuity by the development of a critical relative velocity on
the order of 2.2 m/sec.

The present experimental data indicate that a phase tran-
sition from LHeII to LHeI can be produced by sufficiently strong
first-sound shocks for initial test conditions close to the
lambda transition. Using stronger shocks, it should be possi-
ble to drive the state of the liquid across the melting line
into the solid region from either the LHeII or LHel region.

Due to the relatively low pressures associated with the solid
phase, liquid helium is a promising candidate for potential

studies of shock-induced liquid-solid condensation.
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FILM 3
.4mV/div
.Smsec/div

FILM 4
.4mV/div
.5msec/div

1/14/78, RUN 55
R =Py= 7.5I torr

Ty =1.666°K

Figure 4: Typical Level-Detection Run




Figure 5:

~20=

1714/78, RUN 56
P =Pgy= 7.40 torr

T|= 1.663°K
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IO psec/div

FILM 2
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IO 1 sec/div

FILM |
SmV/div
50u sec/div

CARBON CARD

DETECTOR
AV/div

50u sec/div

Detector Response to the Vapor Flow Field
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FILM 4
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1/14/78, RUN 56
P =Pg = 7.40 torr
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Figure 6: Detector Response to the Liquid Flow Field
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TR A N S

SECTION C

Experimental Investigation of Second-Sound

Shock Waves in Liquid Helium II
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Section C

LIST OF SYMBOLS

first sound speed

second sound speed

specific heat at constant pressure
specific heat at constant volume
Mach number

pressure

heat flux

specific entropy

temperature

bulk fluid velocity

normal fluid velocity

superfluid velocity

relative velocity

shock thickness
mass density

chemical potential

normal fluid

super fluid
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I. INTRODUCTION

Background

Liquid helium, when cooled below 2.17” K, experiences a
so-called A-transition from liquid helium I to liquid helium II,
Helium I behaves as a classical fluid; however, helium II exhibits
non-classical behavior which can only be explained by using the
concepts of quantum mechanics.

Below the \-point, liquid helium behaves as if it were
composed of two interpenetrating, noninteracting fluids: superfluid
carrying no entropy and having no viscosity and normal fluid having
entropy and viscosity. This two-fluid model has been used to
explain many of the anomalous properties of liquid helium II.

From this two-fluid model, one can deduce two distinct forms
of wave motion. When the two fluids move in phase, an ordinary
pressure or sound wave is produced. However, when the two fluids
move out of phase, a temperature wave, termed ''seconc sound',
is transmitted and is unique to liquid helium II. As with ordinary
pressure waves, the temperature waves are non-linear in that their
propagation speeds are not, in general, equal to their acoustic
speeds. Hence finite amplitude perturbations can steepen to form
shock waves.

The importance of these temperature waves can best be
realized by a considcration of heat transfer by the liquid helium.
Liquid helium II exhibits the ability of transferring large amounts Q,f

heat at practically zero temperature gradient. This phenomenon,
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which is very much like that of an ordinary heat pipe, is of great
importance in the cooling of superconducting magnets and other
devices. However, it has been found that for heat fluxes beyond a
critical value, this ''supra heat conduction' breaks down, for which
an adequate explanation and description does not yet exist.

Much work has been done, both experimentally and analytically,
in investigating second sound waves. In particular, second sound
shock waves were first observed by Osborne (1) in 1950. Later,
Dessler and Fairbank (2) in 1956 studied the amplitude dependence
of the second sound velocity by using a small amplitude marker
pulse, first alone, and then superimposed on a larger amplitude
carrier wave and comparing the times of flight.

Several optical investigations have been carried out. In 1967,
Coulter, Leonard and Pike (3) used focussed shadowgraph and
schlieren techniques to study the heat transport from a wire to
helium II and were able, although with very po'or resolution, to see
second sound waves. More recently, Gulyaev (4,5) in 1969 and
1970 optically studied large amplitude second sound using a schlieren
system and constantan ribbons spaced 1 mm apart.

Cummings (6) in 1975 and later Cummings et al. (7) in 1977
studied both first sound (pressure) and second sound shock waves in
helium II by using a specially constructed cryogenic shock tube to
generate both pressure and temperature shocks and then later by
elec'trically pulsing a heater and measuring the time of flight of the
temperature shock waves produced.

The present investigation is an attempt to extend these results




=34

with special emphasis on studying the critical breakdown of the

superfluid heat conduction properties.

Theoretical Formulation

To develop the hydrodynamic equations of liquid helium II,
we will follow Landau (8, 9) and consider the liquid helium II as
composed of two fluids, the superfluid (denoted by subscript s)
and the normal fluid (subscript n). We assume that the density of

the liquid helium can be written as the sum of the superflid density

and the normal fluid density

Also, the momentum density can be written as the sum of the
superfluid and normal fluid momentum densities

- -+ - -
j v

=psvs+pv .

gt n'n

Then, neglecting dissipative processes, the two-fluid

conservation equations of mass, momentum and entropy can be

written in the usual way

MASS

Qa‘ga
e

+7 7 =0
87 3
MOMENTUM -5{- +7.% =0

9 -
ENTROPY  3£2 +¢. (psv,) = 0
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and I is the identity tensor.

Two more equations are necessary to close the system.
Hence, along with an equation of state, we may write an equation
of motion for the superfluid alone. Since the superfluid is an ideal,

irrotational fluid, we may write

ax‘Js:O

Consequently, 33 is the gradient of a scalar potential, and
this potential can be identified as the chemical potential per unit

mass, p. Then the superfluid equation of motion can be written as

SUPERFLUID 3%

MOTION 30+ YUvZ e = 0

The boundary conditions at a solid surface require that the
tangential component of ;’.n vanish from the no-slip condition, the
normal component of the mass flux j. vanish since there can be no
mass flux through the surface, and the normal component of heat
flux a = ps T;’n be continuous. The set of equations, together with
the boundary conditions, constitute the two-fluid hydrodynamic
model for liquid helium II.

In order to extract the acoustic speeds for first and second
sound, we linearize the hydrodynamic equations. With w denoting
the relative velocity between the normal fluid and superfluid,

- -

e 33, the linearization is performed by assuming' that v

and w are small, and considering small perturbation; in p, p,

T, and s about their equilibrium values. The linearized equations
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can then be written

These four equations can be reduced to two wave equations by

using thermodynamic identities for u and p, and
o R
= p
at°
9°s I <iﬂ_>2 V2T
9 t? Pn
-iw(t - x/C) where

By assuming fluctuations proportional to e

C is a wave speed, the equations can be reduced to

ct . c? §B+.p_BT82 +.p_s'_r.5_a§2 = 0
9p p,, C Pn Cy \9P/p

| PPN ) 4

which has solutions, with (

liquid heliem II,

— e

Lm
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. Pn Cp

The first is the familiar sound speed while the second is the
second sound acoustic speed. For first sound, the density or
pressure fluctuations can be seen to be first order and
=y

v
8

3n £V : the entire liquid moves as a whole; while for

second sound the entropy or temperature fluctuations are first
order and ? and ¥ are approximately zero : the two fluids
(normal and super) move in opposite directions.

Khalatnikov (10) determined the governing equations and jump
conditions for both first and second sound shock waves by expanding
the thermodynamic variables p, 8, and u interms of p, T,
and the relative velocity w, and retaining terms of order w’°. For
temperature discontinuities, Khalatnikov found that the second sound

shock speed C; can be expressed as

and

Recall that C,, is the second sound acoustic speed and

was found to be
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The non-linearity of the second-sound wave can easily be seen
from the expression for C; since the wave speed depends on the
temperature jump AT. Note that the coefficient of the AT term
changes its sign for 1.877 K € T < 2.17” K and hence it is possible
for a negative AT to propagate as a shock wave in this temperature
range.

The heat flux in the second sound wave, as stated above, can

be expressed as

Q = psTvn.

From the definition of the relative velocity w = 30 - 33 and
-+
? = p-\; =RV pn3n = 0 for pure counterflow (as is the case for

second-sound waves; i.e., no net mass flow), the heat flux can be

written in terms of w :
Q = pssTw

Hence a critical heat flux implies a critical relative velocity and
vice versa.

In an attempt to explain the sudden appearance of this critical
heat flux, Gorter and Mellink (11) postulated a mutual friction
mechanism between the super and normal fluids with a friction force
proportional to w® and appended such a term to the hydrodynamic

equations. Many measurements have been made of this critical

—— e —————————— st
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counterflow, all done in narrow channels with steady flow. In an
attempt to correlate these previous measurements, Dimotakis (12)
derived a relatively simple similarity law from a dimensional
consideration of the hydrodynamic equations with the mutual friction
terms added. For steady flow in channels, this law implies a
critical value for the counterflow velocity W, and hence for the

critical heat flux dc as

where d is the diameter of the tube and A _is the coefficient in the
Gorter-Mellink term, given by the empirical formula (13)

0. 0076

logio A(T) = 1.10+ 3.12 logy T +T-—T-7-,f— .
A

The aims of this investigation, then are to quantify, with
experimental data, the non-linearity of thé second sound shock
speed and to study the critical heat flux phenomenon discussed above.
Second sound shock waves are ideal for this purpose as the shock
speed (and hence amplitude) is dependent on the heat input. Con-
sequently, for a known heat input pulse, a measurable and repeatable

wave is produced. Since all previous measurements of critical

- counterflow have been done with steady flow, an investigation can be

made into the effects of nonsteady heat transfer(using these
temperature shock waves)on the critical counterflow velocity. These

results can then be used to determine the validity of the Dimotakis
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similarity law in nonsteady flow.
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II. EXPERIMENTAL APPARATUS
Shock Tube

The method chosen as the most practical for producing the
second sound shock waves consisted of electrically pulsing a suitable
heating element and following the wave thus produced as it travels
along a tube. Since, from the two-fluid model, heat is convected
away by the normal fluid, and the total mass flux in the tube is zero,
a counterflow is set up when the heating element is pulsed, creating
a temperature wave,

The '"'second sound shock tube'' designed and constructed for
this investigation consists of a one inch square érc;ss section

Plexiglas tube with provisions for a heater at one end and

temperature detectors at the opposite end and also along one sidewall.

The shock tube is shown in Figure 1. The heater mounts on the
flange at the béttom and sealing is attempted using a silicon rubber
""gasket'. Detectors, which will be discussed below, can be
mounted on the top of the four inch long tubc, .for cendwall measure-
ments, and also along the removable sidewall by spring clamping a
glass sensor slide in place. Since all structural parts are
constructed from Plexiglas, there can be no differential shrinkage
and hence all angular alignments are maintained when the shock
tube is cooled to liquid helium temperatures. The entire shock
tube aesembly is immersed in liquid helium and since it is not
completely scaled, the liquid helium can fill the tube. All work is

done at the saturated vapor pressurc with the height of liquid above
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the tube providing enough hydrostatic pressure above SVP to allow

the firing of at least smaller heat pulses without significant boiling.

Heater

Several considerations affected the design of the heating
element used to produce the second sound shock waves. First, the
element should be capable of withstanding large voltage pulses, on
the order of 100- 200 volts. Second, the heater must have a very
fast time response in order to closely follow the shape of the voltage
input. Finally, the heater assembly must be able to survive
repeated cycling to liquid helium temperatures.

In order to get the necessary time response, it was decided to
use a thin film element as the heater. After much experimentation
with different substances, it was found that Nichrome¢, vacuum
evaporated onto a quartz substratc to a thickness of approximately
1000 angstroms gave the best results in terms of film electrical
resistance (the order of 10 ohms) and durability. Quartz was
chosen as a substrate for its good thermal préperties. especially
its strength when cooled to liquid helium temperatures.

Electrical contact to the heater film was accomplished by
evaporating 1000 A thick copper pads at the edges of the Nichrome
film and attaching the input wire leads by mechanical clamps,
using coiled indium wire between the clamp and the evaporated
copper pad. This mcthod of attaching the leads proved very
satisfactory and gave no major problems. Sufficient force could be

applied to compress the indium wire to insure electrical contact
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when cooled to liquid helium temperatures. A photograph of a
typical heater appears in Figure 2.

The electrical heater pulse is created by a specially designed
pulser, capable of generating pulses of up to 100 volts amplitude
and duration ranging from several microseconds to over 10 milli-
seconds. Furthermore, the high voltage pulser can follow any
input waveform, in order to see the effects of a slowly rising heat
pulse on the shock wave produced. An oscilloscope trace of a typical

voltage pulse is shown in Figure 3.

Detectors

In order to measure the temperature amplitudes of the second
sound shock waves, it was decided to follow an earlier development
by Laguna (14) and use superconducting thin films with adjustable
transition temperatures. Different superconducting materials and
techniques were tried with varied success, including tantalum on
titanium, aluminum oxide, and tin on gold, all deposited on various
substrates. The tantalum on titanium deposited on silicon proved
to be the most durable, and after repeated cycling in liquid helium,
showed no sign of degradation. However, the final detectors used ,
which gave the best results, were gold evaporated on tin, deposited
on a quartz or pyrex glass substrate. The reasons for choosing the
tin-gold film will be discussed below. Purec tin is vacuum evaporated
to form a film 1000 A thick. Then 250 A of gold is deposited on the
tin and the combination is then photo-etched following a technique

used by Laguna (14) to form the actual detector. The detector
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consists of a strip of this gold-tin combination, 0.025 mm wide and
10 mm long, with pure tin superconducting leads to make connections
to the lead-in cables. These connections are made with pressed
indium. A photograph of a typical detector slide is shown in
Figure 4. The basic transition temperature of these superconducting
thin films is determined by the ratio of gold to tin (pure tin
transitions at 3.74°K); however, the transition temperature can be
lowered by applying a magnetic field to the film, and by this means
the transition temperature can be set to whatever point is desired.
The temperature variations due to the passage of the second sound
wave cause changes in the film resistance, and with a constant bias
current, changes in the voltage drop across it. By adjusting the
magnetic field so as to have the film transition to its superconducting
state at the working shock tube temperature, as shown in Figure 5,
a large slope, -g% » of voltage drop versus temperature and
therefore a large sensitivity, can be obtained. The detectors are
calibrated under static conditions by recording the voltage drop
across the film for a fixed magnctic field as the bath temperature
is slowly varied.

The signal from the detector is then amplified by an ultra low-
noise preamplifier (Princeton Applied Research Model 113), and a
voltage-time history of the second sound shock passage is recorded

on an oscilloscope.

Data Reduction Technique

In order to obtain the second sound shock speed, a digital
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interval counter (Hewlett-Packard Model 5326B Counter-Timer
DVM) with a resolution of 0.1 usec., is used to measure the time
of flight of the wave, either from the heater to the detector, or
between two detectors. For the heater to detector case, the
counter is triggered on by the voltage pulse into the heater and off
by the sensor output. In the detector to detector case the counter
measures the time of flight of the wave between two detectors a
known distance apart.

Temperature amplitude information can be obtained from the
detector voltage-time history recorded on an oscilloscope. The
voltage to temperature conversion is determined from the static
calibration curves for each sensor, and knowing the amplifier gain,
the temperature jump, AT, can be determined by measuring the
voltage amplitudes from the oscilloscope traces. In this manner,
plots of shock strength -ATT, versﬂus shock '"Mach number' (wave
speed divided by the local second sound acoustic speed) and also

heater input power versus Mach number can be obtained.

§ ,__

sl ——

——
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III. RESULTS

The quality of the signal produced from the superconducting
detectors is demonstrated in Figure 6. ‘It shows the response of a
tin on gold sidewall detector to a heat pulse propagating threugh the
liquid. The wave is travelling from right to left in the photograph
and the second sound shock can clearly be seen to be at the front
of the pulse. The heat pulse in Figure 6 was generated from a
square voltage pulse, similar to the one shown in Figure 3, however
of 100 psec duration. From the fast rigsetime of the shock (the
risetime measured from the photograph is limited by the amplifier
bandwidth, the actual risetime is much less than a microsecond)
and the low noisec level of the signal, very accuratc measurements
of the wave speed can be made.

Figure 7 shows a series of heat pulses, all produced by
rectangular voltage pulses, and it can readily be seen how the heat
pulse shape develops as it propagates along the tube. In exact
analogy with corresponding piston produced pressure shock waves
in gases, it is evident that the trailing edge of the pulse catches up
to the shock front. One interesting feature to note in these
oscilloscope traces are the small pulses following behind the heat
pulse. These '"blips' appear in all traces and can be seen to
overtake the heat pulse and eventually ride on top of it. These
pulses will be discussed in greater detail later on.
| Also in analogy with ordinary pressure sound wavés, the

second sound shock waves reflect from an endwall with a cor-

i e e
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responding doubling of the amplitude. Figure 8 shows heat pulses
reflecting from a solid endwall. The detectors in these photographs
are tin on gold sidewall detectors and the upper trace in each
oscillograph is a sidewall detector closest to the heater, while the
lower trace is one closest to the endwall. Figure 8a shows the
reflection of a 10 msec long heat pulse while Figure 8b shows 100
psec pulses. As before, wave propagation is to the left and the
im-:ident wave (on the left) and the reflected wave (on the right) are
both clearly visible. The temperature amplitude doubling is

readily seen in Figure 8a.

Also apparent in both photographs are the "blipé" mentioned
above, and the existence of both positive and negative '"blips" is
clearly evident.

Figure 9 shows oscilloscope traces of heat pulses of various
lengths from 250 usec to 10 msec. There seems to be no qualitative
difference in pulse shape from short pulses to long ones except that
the trailing edge never overtakes the shock front in the. very long
pulses, at least in the tength of the shock tube.

A superconducting detector was mounted on the end of a probe
installed in the center of the shock tube in order to investigate any
difference in waveform that may exist between the center and

sidewall of the shock tube. Oscilloscope traces of the detector

output are shown in Figure 10. The lower traces are the center probe

outputs while the upper traces are the sidewall detector outputs.

Figure 10a shows 100 usec long heat pulses and Figure 10b shows

—
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10 msec pulses. In Figure 10b there appears a significant difference

between the center and sidewall traces. While this difference is

also seen in Figure 10a, the effect is more easily explainable using
the longer pulses shown in Figure 10b. Referring to Figure 10c,
we note the wave shape: after passage of the shock front, the pulse
stays flat for a time of 0. 0205 msec corresponding to a length of
0.42 mm (using the second sound acoustic speed Cy = 20.41 m/sec
for a bath temperature of 1.65° K) or one-half the width of the
center probe end. The tempevrature amplitude decays to one-half
the initial amplitude (height hi in the drawing) in 0. 089 msec
corresponding to a distance of 1.817 mm or one-half the length of
the sensor strip. From the data collected in endwall measurements,
it was found that an end-mounted detector output is twice the
amplitude of the incident wave, as was seen from an examination of
the reflected wave traces in Figure 8. However, due to the fact
that the detector does not occupy the entire area of the shock tube,
diffracted waves will belv gencrated at the edges of the detector as
the shock front passes, a§ shown in Figure 10c. These waves
cause the amplitude of the reflected wave measured by the end-
mounted probe to decay until the amplitude is that of the incident
wave. This is the behavior clearly seen in Figure 10b.

As mentioned earlier, a series of alternating positive and
negative pulses appears following every heat pulse. Although no
conclusive evidence has as yet been obtained, results thus far lead

to several possible explanations as to their origin. Perhaps the

most plausible origin of these pulses is possible diffracted

B e
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[ waves generated at the edges of the thin film heater, where the

shock tube joins the substrate. Although the wavelength of the
"blips' and the spacing between the ones in the series do not exactly
match the expected values for diffraction waves, the numbers are
close enough so as to not be discounted. Attempts were made to seal
the joint between the heater film and shock tube; however, it could
not be determined if the joint was properly sealed against a
""superleak'', and since the pulses still appeared, no conclusive
results were obtained. The small pulses are definitely not generated
by the heater, as there is no possible way to generate a negative
temperature wave (below ambient temperature) using an electrically-
excited heater. As can be seen from an examination of the heater
voltage pulse, shown in Figure 3, there is no evidence of any
extraneous pulses which could be causing these ''blips''. One other
possible explanation is the small pulses are evidence of some sort

of motion left behind in the wake of the heat pulse, possibly
indicative of vortices generated by the passage of .the second sound
shock pulse. More work needs to be done in order to be conclusive
as to the origin of these pulses.

Figures 11 - 14 show plots of shock strength, ér—T , versus
the ratio of shock wave speed to second sound speed (called '""Mach
number' in analogy with ordinary gasdynamic shocks) for various
detectors and detector locations. Figures 11 and 12 are for end
mounted detectors, Figure 11 showing the results obtained from an
endwall mounted tantalum-on-titanium detector and Figure 12

f showing an endwall tin-on-gold detector along with the results from
!
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the center-probe, also an end mounted tin-on-gold detector. While
the qualitative shape of both plots is essentially the same, the shock
amplitudes given by the tin-gold detectors are much higher than
those from the tantalum. This discrepancy can be explained by
considering the composition and construction of the two types of
detectors.

The tantalum-titanium detector is fabricated by depositing
tantalum on top of titanium which had been deposited on a silicon
substrate. The tantalum is then anodized to a certain depth to
produce a superconducting transition temperature in the desired
range. This produces an oxide layer on top of the actual super-
conducting detector strip which acts as a thermal insulator for the
detector. Hence the detector cannot measure the full temperature
jump produced by the shock. In addition, the silicon substrate is an
excellent heat conductor, which enhances this problem. To
verify this, a tantalum-titanium detector was fabricated on a glass
substrate which resulted in significantly higher amplitudes.

Plotted in Figure 12 are data from several different
experimental runs as shown, and for three heat pulse lengths:

100 psec, 3 msec, and 10 msec. As can be seen from the data,
there appears to be no appreciable difference in the behavior of the
shock wave for the range of pulse lengths used in the initial linear
region of the plot. However,the data seem to indicate that the
shorter, 100 usec, pulses were capable of reaching a higher

temperature amplitude than the longer pulses. Although more data

| g o=
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need to be obtained, other experimental runs seem to support this
observation.

The development of a critical limit of shock strength in the
region 1.04 € M < 1.06 is clearly evident in both figures. This
behavior will be discussed in greater detail below.

Figure 13 shows a plot of shock strength versus Mach number
for a sidewall-mounted tin on gold detector for two different
experimental runs. Again the development of this critical limit in
shock strength is evident. Note that the temperature amplitudes
shown here are one-half those of the endwall measurements, as is
expected. Also shown for comparison is a calculation of the shock
strength versus Mach number as given by Khalatnikov (10) and

developed above. Recall that

AT 0 a9
Cp = Cm[li-?—ﬁhl(cm ﬁ.)] .

Now with -g—-% = - | we can write

aC
S AT)3 T ,8C , T _p 1
. = e o DA *chaT &
The derivatives appearing in the brackets can be calculated by using

the result from Chapter I for C,; and the definition of P =P~ by

to give

I -
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This gives M in terms of temperature derivatives of fpﬁ and
Cp" which have been tabulated by Maynard (15). Evaluating the
expression for M at the initial temperature of 1.65° K and the
corresponding saturated vapor pressure, we find for M in terms

of the shock strength

M = 1+1.4704 AT.T-

which is shown in Figure 13.

The discrepancy between the calculated values of ATrI and the
measured values can again be explained in terms of an insulating
oxide layer existing on top of the detector film..

Since the detectors are calibrated under static conditions it is
not clear that the calibration is valia for the existing dynamic
passage of the heat pulse, since in the static case, the film substrate
has time to come to equilibrium with the liquid helium bath, while in
the actual shock wave case, this certainly docs nol uvccur, and hence
the film may not be responding properly to the shock amplitude.

This could easily be analyzed using the heat equation; however,
reliable data for the thermal conductivity and thermal diffusivity
could not be found for these materials at liquid .helium temperatures.

Shock wave speed, determined by measuring the time of flight
between two sidewall detectors, as opposed to measuring time of
flight between the heater and d«;tector as in the previous cases, is
plotted with shock strength in Figure 14. These data were obtained

using gold on tin detectors in order to attempt to further reduce the

oxide layer which forms on the tin due to exposure to the atmosphere.
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However, due to the relatively thin (250 A) layer of gold, and the
apparent intermingling of the tin and the gold rather than a gold
layer forming on top of the tin, a tin oxide layer is still definitely
produced. Also, since the problem of the response of the substrate
to the wave passage, as already discussed, still exisfs, the
temperature amplitudes measured still are below the calculated
values.

The qualitative appearance of the data, however, is considerably
different in Figure 14 than in the previous plqts. Whereas in the
previous figures, the data fold over, but with an apparent increase
in wave speed for the same shock strength, no such behavior is seen
in Figure 14. In fact, for increasing heater power input, the shock
strength increases to a maximum value, -A-TI = 0.0197 in Figure 14,
then folds back on itself unlike the previous measurements. In
order to distinguish the higher hecat input data (folded portion past
the critical limit) from the lower heat values, a different symbol has
been used for these points. Thus, a unique shock strength implies a
unique wave speed, as would be expected. One plausible explanation
for the difference between the two curves (heater to detector and
detector to detector measurements) is liquid helium boiling
at the heater surface. For the higher amplitude pulses, the
liquid helium definitely vaporizes at the heater surface (verified
visually and by an audible 'clicking'' sound). If the wave speed is
determined by measuring time of flight from the heater to detector

and there is the formation of a vapor bubble, then the actual time
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of flight of the wave may not be properly determined. This situation
is eliminated by measuring time of flight between two detectors
placed far enough downstream so that tﬁe shock wave passes by
after the heater boiling has stopped. Further verification of this
phenomenon is obtained using pulses of 10 msec duration. The
heater boiling (i.e., the voltage pulse to the heater) has not stopped
before the shock wave passes the detectors and a folding in the
curve, similar to the heater to detector case, is observed.

The apparent critical limit in shock strength seen in the data
presented could be attributed to liquid boiling behind the shock wave.
Since the experiment is conducted at the saturated vapor pressure
with only the head of liquid helium above the shock tube, calculations
indicate that certain combinations of large amplitude shock waves
with lower levels of liquid helium in the bath could result in boiling
behind the wave. This would indicate that in order to increase the
heat pulse amplitude, a pressurized system is nccessary.

Another explanation for the peak in the shock strength is the
reaching of the critical limit in heat flux, or counterflow velocity
w, as discussed above. While the magnitude of the critical Mach
number does not appear very large, the dependence of the heat flux
in the wave on the counterflow velocity produced by the shock is
very pronounced, as indicated in Figures 15 and 16, where heat
flux is plotted against shock Mach number (and hence the counterflow
velocity, w, which depends on M) for the heater to detector

mecasurements (Figure 15) and the detector to detector measure-
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ments (Figure 16). The heat fluxes plotted in these figures are
calculated in the following manner :

Recall that the heat flux can be expressed as
d i T Tw.

From the expression for w :

% w dE e
Pncon

the heat flux can be written

.

T
Q = GG TAT,

or

. p /p oo
" af_n —p | AT
Q = PC20<l_p ’p>( 2 > T

n S
For T, = 1.65°K ,

Q = 9.1407 x 10° 4T Walts
m

Since ATT is related to the Mach number M, Q can be expressed
in terms of M if desired.

Since the counterflow velocity, w, is related to the shock
strength A,I.—T » Wwe can calculate the value of w for the critical
limit of 57 in the data. From

w=|£ sL |AT
Pnczo T
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U m A%
we compute a Wil * Z.SIE for w- = 0.018 and

” is at least one order of

T, = 1.6420°K. This value of w
max

magnitude greater than previously found for steady channel flow. If

the value of w is computed using the Mach number at the observed

critical point, which can be related to -A,i,'-l-‘

by Khalatnikov's theory,
then a value of w = 3.77 m/sec is obtained, which is even greater
than bgfore. Hence, since the critical heat flux is related to the
critical counterflow velocity, it would be expected that heat fluxes
at least an order of magnitude greater can be transported ueing
pulsed techniques.

If we assume the Dimotakis similarity is valid for this geometry,
then a length scale is needed., At least close to the shock front, the
critical value for the counterflow velocity cannot depend on the tube
dimensions. Hence, the only apparent length scale entering the
problem is the shock thickness. Provided the peak in the shock
strength data is the critical condition, we can aprly the Dimotakis
Recall that the similarity

similarity to calculate the shock thickness.

parameter is expressed as

pschl = const = |
or
1
wil & wte
c psA

where A is the Gorter-Mellink constant. Using the value of w

max

v, . 2.51 m/sec calculated above, we arrive at a length, or shock
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thickness, of 4 = 5.42 p. Moreover, using the adjusted value of
W oax - 3+ 77 m/sec, we compute a thickness of 3.61 .

Figure 17 shows a plot of heater power versus shock Mach
number for two different pulse lengths obtained from detector to
detector measurements. It is apparent that the same peak appears
in these data as in the amplitude measurements. Very similar data
has been published by Cummi.ngs et al. (7) and the agreement is

extremely good. They find a folding in the curve at the same heater

power (about 20 - 30 Watts/cm®) as is shown here. Note that the

initial part of the curve is linear, in agreement with the theory. Also

noteworthy are the apparent oscillations in the data for the 250 usec
pulses after the peak in the curve. This behavior was also seen in
the data from the center probe measurements, shown in Figure 18.
These oscillations can be correlated to the '"blips'" mentioned above
catching up and overtaking the heat pulse. As the alternating
positive and ncgative pulses overtake the heat pulse and shock front,
the data undergo thc oscillatory behavior shown. There are not
enough data to be conclusive as to whether this effect is caused by

the '"blips", or both caused by a third phenomenon, or whether the

correlation is merely coincidental.
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IV. CONCLUSIONS

A facility to study second sound shock waves was designed and
constructed. Preliminary measurements using superconducting thin
film detectors indicate the existence of a critical breakdown of the
"'supra heat conductivity' of the liquid helium II at much higher heat
fluxes than previously measured in the steady flow condition. The
ability to transfer larger amounts of heat using pulsed techniques is
of great technological importance. Qualitative confirmation of
Khalatnikov's linear theory was accomplished, and agreement with
other known results was established. Performing these measure-
ments in a pressurized system will definitely shed more light on the
question of critical breakdown, as the boiling problem encountered

in this investigation will be eliminated.
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FIGURE 2 TYPICAL NICHROME HEATER
COPPER LEADS
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5 volt /div
0.5 msec/div

FIGURE 3 OSCILLOSCOPE TRACE OF TYPICAL
HEATER VOLTAGE PULSE
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FIGURE 4 TYPICAL GOLD ON TIN SIDEWALL
DETECTOR SLIDE
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To=1.64°K
2.35 mK /div
SO u sec/div

.

FIGURE 6 TYPICAL OSCILLOSCOPE TRACE
OF SECOND SOUND SHOCK WAVE

AS MEASURED BY A SUPERCONDUCTING
DETECTOR
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7a. 2.35 mK/div
I00 u sec/div

7b. 2.35 mK/div
100 sec /div

7c. 4.70 mK/div
100 u sec/div

7d. 9.45 mK/div
100 1 sec/div

To= 1.64°K

FIGURE 7 TYPICAL VARIATION OF HEAT PULSE SHAPE AS
TRAILING EDGE OVERTAKES SECOND SOUND SHOCK
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8a. upper trace: 5 mvolt/div
lower trace: 500 m volt/div
horizontal: SO0 i sec/div
10 msec Heat Pulse
To=1.68°K

8b. upper trace: 100 mvolt/div
lower trace: 500 m volt/div
horizontal : 1.0 msec/div
OO 1 sec Heat Pulse
To = 1.63 °K

FIGURE 8 OSCILLOSCOPE TRACES SHOWING SECOND SOUND
SHOCK WAVE REFLECTION FROM AN ENDWALL
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250 p sec pulse duration
1.35 mK/div
200 1 sec /div

500 u sec pulse duration
1.35 mK/div

200 u sec/div

10 m sec pulse duration
1.35 mK/div

200 u sec/div

i FIGURE 9 OSCILLOSCOPE TRACES OF TYPICAL HEAT PULSES
GENERATED BY VARIOUS DURATION VOLTAGE PULSES,

T, = 1.64°K
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10a. 100 msec pulse I0b. 10 msec puise

upper trace: 3.34 mK/div, sidewall detector
lower trace: 5.09 mK/div, center probe detector

horizontal: 200 u sec/div
To* 1.63°K

0.0205 msec S
‘—1 r‘_ ,C/’ b Second Sound
Pobo Shock Wave
s

-

' 10 c.

o L‘\
L— 0.089 msec

FIGURE 10 SECOND SOUND SHOCK WAVES AS MEASURED
BY SIDEWALL DETECTOR AND CENTER PROBE
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FIGURE (I PLOT OF SHOCK STRENGTH VS. M,
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FIGURE 16 PLOT OF HEAT FLUX VS.M,DETECTOR
TO DETECTOR MEASUREMENTS
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Section D

LIST OF SYMBOLS

first sound speed
second sound speed
specific heat
pressure

specific entropy
temperature

shock velocity

bulk fluid velocity
normal fluid velocity
superfluid velocity
relative velocity
absorption coefficient of second sound
shock thickness
normal viscosity
thermal conductivity
mass density

shock strength
chemical potential
second viscosities

angular frequency

normal fluid
superfluid
squilibriom state where w = 0

suwilibrium state where w # 0
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LIST OF SYMBOLS (cont.)

perturbation from equilibrium state
jump between equilibrium states

thermodynamic function of w°
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I. INTRODUCTION

One of the most unusual and useful properties of liquid Helium II is
its ability to propagate heat as a temperature wave. This method of
transporting heat is totally analogous to the distribution of density
perturbations inany fluid by pressure or "sound waves". And just as
finite amplitude pressure waves will steepen into shock waves, finite
amplitude temperature waves in He II will steepen into "second sound shock
waves". The structure of these temperature shock waves is the subject
of the following discussion.

Calculation of shock waves in a complex medium such as Helium II
can be done using techniques from singular perturbation theory. The
solution sought is one consisting of two equilibrium states which are
connected by a thin shock layer or shock front. The jump conditions
between the two equilibrium states form the outer solution, which is
gotten by neglecting all the dissipative terms. These terms are zero
in the outer solution since there are no gradients in any of the dependent
variables in the equilibrium states. Gradients do exist and are important
in the shock layer. In fact it is the balance between the dissipative
terms and the nonlinear steepening terms which governs the shock
structure.

The model of Helium II, which serves as a starting point for the

following calculations, is the two fluid theory as set down by L. D. Landau}

The derivation begins by integrating the steady, one-dimensional equations
for a superfluid and then evaluating the constants of integration using

values for one of the equilibrium states. This results in the shock
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equations presented in tables 3 and 4. Next the shock equations, in the
lTinearized dissipationless approximation, are solved to obtain solutions
for steady, first and second sound waves. These solutions shows that,

to first order, the quantities characterizing a second sound wave are
perturbations in the temperature, entropy, normal mass fraction, and
relative velocity between the normal and superfluid motions; variations
in pressure and density are of higher order. Because this is a linearized
solution to a set of basically nonlinear equations, the results are valid
only in the limit vanishing amplitude. Finite-amplitude waves, which
steepen thru nonlinear processes into shock waves, have an amplitude-
dependent velocity. The shock velocity can only be calculated if the
nonlinear terms are retained. This is done for second sound shock waves
by solving the dissipationless shock equations to second order in char-
acterizing variables: T', s', &', w.

In the shock layer the gradients become very large so that even
though the kinetic coefficients are small, their products are dominate
terms in the equations. These dissipative terms.are of order (T')2 mwz;
that is they are second order in the characterizing variables for second
sound.. Therefore, to balance these terms, the shock equations must be
solved with all the other second order terms being retained. The order
of the dissipative terms depends on the fact that for weak shock waves,
the shock thickness is inversely proportional to the shock strength, o,
which will be taken as the temperature jump normalized by an equilibrium
state temperature. (This fact will be derived later when the method of

stretching and matched asymptotic expansiors is used to solve for the
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shock structure.) The shock layer must therefore be scaled by 1/6, which
means the derivative with respect to the spatial dimension, x, must be
order 8. Since the temperature and velocity perturbations are also of

this order their derivatives must be order eza wz.

it ———
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IT. DERIVING THE SHOCK EQUATIONS

Calculation of shock wave jump conditions traditionally makes use of
conservation equations for mass, momentum, and energy; these quantities
are conserved from one equilibrium state to the other across the shock,
even though the details within the shock itself may be unknown. The
same approach is applicable to temperéture shocks in He II, except in
this case an additional equation describing the superfluid velocity
field must be included.

The major problem in calculating the shock conditions in superfluid
Helium arises because the thermodynamics of this liquid are not completely
known. The thermodynamic variables of He II are functions of two ordinary
variables, like pressure and temperature, plus an extra variable--the
relative velocity between the normal and superfluid motions. Thus, the
thermodynamics of He II are intrinsically connected with the velocity
fields; that is, there is no way to separate the thermodynamics from the
velocity field dependence, such as can be done with an ordinary one-
component fluid. This leads to complicated equations, but does not
represent a fundamental problem in the calculations. What is more signif-
icant, is that the dependence of the thermodynamic variables on the
relative velocity is not known. The only recourse to date has been to
expand the thermodynamics in terms of w, the re]atiQe velocity, which

1 and is

must be assumed small in some sense. This was done by Landau
reproduced in Table 1. It should be noted that the thermodynamics are
expansions in the square of the relative velocities and that only the

coefficients for the terms second order in w are known. This makes it
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TABLE 1
Thermodynamic Functions Expanded in Terms of

the Relative Velocity

v o 1 pn 2
U(p’T:wz) "'U(p’T) "z-p— w +0(Vﬂ)
3(p.TW2) = s(p,T) + 7 £ + O(We)

1 sl o
olB.Tw) PIP.HL 2 gpw2 g

E(p,T.W2) = E(p,T) + O(w*)
[¢]
)
k.= P
h .
where gp: %EEAT
2 il 0

NOTE: When the generalized thermodynamic variables, which are functions
of pressure,.temperature and relative velocity, are used in context
with the variables that can be measured, which are functions of pressure
and temperature only, then the former will be denoted by a tilda as

shown above while the latter will be left unadorned.
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TABLE 2

The Steady, One-Dimensional Form of the

Two-Fluid Equations Including Dissipation

(¢ I

xIi=0
9—-[3‘v2+3"35w2+p+r].'=0
dx "\;

g ¥y 1 3 ¥
dx["+2vs+h] 0

In.

. 2V l 2 vy n 2 ’ =
[J(u +3 vs) +psTv, +p vaw + Q ] 0

(=%

X

= mv = a, v * N v
J =PV =PV PsVs
WEN -V

dv
d n
T = -(%n*'Cz) 'd)Tn toy g (pgW)
v
h = C3g; (S'SW)'Cl aﬂ'

dvn

d (v d (n
+ 21V, ax (PgW) - 230 W 4= (o W)
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possible to solve the shock equations to third order in w, but no higher.

Since w is a first order quantity in a second sound shock wave, this

necessarily means that the results to be obtained are valid only for weak

temperature shocks.
The following derivations are done in the reference frame which
travels along with the shock wave--thé shock-stationary frame. In this

reference frame the shock profile is assumed steady. In the laboratory

frame, where the undisturbed fluid is at rest, the shock will be trave]ing

in the negative x-direction; that is, the shock velocity, US’ will be
negative. In the shock-stationary frame the mass flux, j, therefore

will be in the positive x-direction.

T
w=020
->
m—— 5%
Ty : To
Front Steepened Back Steepened
TEMPERATURE RAISING SHOCK TEMPERATURE LOWERING SHOCK
¥

The shock profiles for two types of temperature shocks possible in He II
are shown above. The front steepened one is a temperature raising shock
in which the entropy density following the shock is greater than before
it. The back steepened one is a temperature lowering shock; in this
case the entropy density is decreased following passage of the shock
front.

In the chosen reference frame the applicable equations describing a

plane shock wave are the steady, one-dimensional form of the conservation

e . e ———— o e . et
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equations previously mentioned. This set of equations is reproduced as
Table 2. The dissipative effects are included so that a shock profile
and thickness can be calculated. The form of the dissipative terms
follows from a consistent derivation made by Landau and Khalatnikov2
which requires the assumption that the superfluid is ffee of vorticity;
this is no restriction in the ana]ysig which follows.

The one dimensional equations are easily integrated and the constants
of integration are evaluated for the equi]ibridm state where the relative
velocity is’zero. This state will be indicated by a subscript zero. The
other equilibrium state will be denoted by a subscript one. Unsubscripted

variables will be considered as functions of x. For example, the inte-

grated equation for mass conservation is:
. n
(1) J EpV = ‘DoUS

This can be solved for the bulk velocity, v, to get:

=Po PO
- ) 2 4
(2) v = —g—- Ug 2 Ug + %pg UW gp + 0(w4)

where the last step was to expand the density in terms of w2. The thermc-
dynamic variables without the tilda are functions oniy of pressure and
temperature. The other three equations can be integrated and expanded in
terms of w2; then the bulk velocity, v, can be eliminated by use of thg
previous formula. The resulting "shock equations" can be found in Table
3. Two equations which are linear combinations of the three original
shock equations and which are useful when calculating second sound shock

waves are presented in Table 4.
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The same procedure of expanding in the relative velocity and then
eliminating any bulk velocity dependence must also be applied to the

dissipative terms, t, h, and Q'. From the definition of v, We have:

v =v+
n

oeldoe

s
e e 0(w")

By using equation (2), the normal fluid velocity can be expanded in terms
of w and the shock velocity with the result:

2 Po o Pq 5 %
(3) v = -B—US p—w+1§p0Usw gp+0(w)

n
When calculating the derivatives, use will be made of the fact that

the shock thickness is inversely proportional to the shock strength. For

second sound shocks this means that the spatial dimension, x, is scaled

by wl

e
4
=

With this simplification, the normal velocity gradient written out to

third order in w is:

oty &5 18 d
Yo T (psw 3 °°Us) a% p 7 o dx Ps¥ * Y0oUs dx Epwz + 0(w)

Qo
x

(4)

The product of the normal velocity with equation (4) is:

dv p
n _ Po 4.8 d
(5)  vagx = 5 Us (pols - 2ogW) gz o+ o (ogW = pols) G oW

(o]
- (%p¥2) p—ogygpwz + 0(w+)

ya =

J
|
|
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These results allow for further expansion and simplification of the
kinectic fluxes which are valid for second sound shocks. These expansions

are reproduced in Table 5.
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TABLE 3

Shock Equations

MOMENTUM

pP-p Pop Pg P o Po

—L = (1-2) 5|5 - = (ool £ )| (R - =5 +0(w)
Uz

o2 Pl P [ p2 P s P Ug pUg

SUPERFLUID

o}
* 5 (ooZey) (P - —, + 0(w*)
TOTAL ENERGY

sT - soTy P W P
SNRSETING:.. Sk S st o S N oWy
o [( o 3 Us] = (US [2 e ~Ter) |5 (U)
3

+ [("—j)z + 2 (L gT) - ? <pou§>gp] Z—'; (g’

n S

+ o + Fh[ + 0(w4)
poUg s

NOTE: Since these equations make use of the expanded thermodynamic
functions, they are strictly valid only when the relative velocity is

small.
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TABLE 4

Shock Equations Useful for Second Sound

Shock Waves

"W" EQUATION
H-Hp -p o] 0 p._pP
. N T N TR R 9P
{ U2 ) (pug % (1 o) o p (US) 2 Tz"'(us)2
n 2 T h 4
1 (pOU 5)( B—Ug Ug'"'O(w)

MODIFIED ENERGY EQUATION

T- SoTo P-po
( -} ) % - & _g sT
Q - oug' = K(1 ——? U (U =)

g S
+[—p§+a(;—neTn] e )(—)(U o’

+ ﬁ—y + 0(w*)

i e g e e+ t———es g
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TABLE 5

Dissipative Terms for Second Sound Shocks

LB (%-n+ g2)(p W - poU) ﬂ; %
- (%""’Cz - pZ;) pl%’—(-psw

*s(%m‘ z2) pol g—x cpwz + 0(w")

-
n
]

Cl(psw - DoUs) g—i%
1d
- (z¢1 - p23) > dx Ps”

- % &1 polg g—x Epwz + 0(w"*)

LY ™ Ly L)
-k gx - (g0t e2) 5 (o) Gx o

L
)

1
P

g.‘ﬂ.

4 Po
+2(3n + 52 - %oty 5—-(psw Ug)
DOU
+ (g'ﬂ" Z2 - pZy) - 3 5 -g—; pW

DSW

2o

4 PgW
- (§'n+ T2 - 205y + p2g3) ~

pwz + 0(w*)

+ Gnt 2) =2 mog) & ¢
gn 2 P Po s a;
NOTE: These equations, besides being expansions in the relative velocity,
make use of the fact that d/dx is of order w. Thus these equations are

strictly valid only for weak second sound shock waves.
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ITI. LINEARIZED SOLUTION

Now since the shock waves under consideration are assumed small, the
thermodynamic functions may be expanded further in terms of pressure and

temperature perturbations,p' and T', defined by:

Po +p'
To ¢+ T'

m

p
T

11}

For 1liquid He II the coefficient of thermal expansion is very small.
Therefore it will be neglected in the calculations to follow. Note that
the assumption that the coefficient of thermal expansion is zero is
equivalent to assumming that the entropy is a function only of temperature
and that density is a function only of pressure. Also the specific heat
at constant pressure and volume are equivalent and will be denoted by C.
Table 6 lists a set of thermodynamic perturbations expansions when this
assumption is envoked.

: In order to see the role the various thermodynamic variables play in
the two forms of wave motion occurring in He II, a solution to the
linearized equations will be sought first. To do this the shock equations
of Table 4 will be expanded in terms of fhe pressure and temperature
perturbations with only linear terms being retained. Now to solve for
the jump conditions, the perturbations p', and T', and w, will become

the differences between the two equilibrium states:

P' + Py - Pg = AP
T > Tl - To g AT
W+ W = AW
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TABLE 6

Thermodynamic Perturbation Expansions
Independent variables:
p=mpo+p T=Tg+ T

where %&- << 1 and =— << 1

Expansions of dependent variables:

H(p,T) = wg - soT' + 1 - (Qhﬂz- ( ] ) Lg'—12+ ;

DaIO

p'
1)2
S(T) =50+ (ShT + %()+-z]%l+...
"2
P =pg + + S
(p) 0 ‘E%- (HF')O'('S—L
12
sr-soTo=(s+c)OT'+()+]%-L+...
PO '
(1-z)o o . ..
0274
gﬂ. = (gﬂq + £, T +€p' +
p p 0 T P i
p )
s W T koo '
3= o Rl = e
where Cs= T(%%) = specific heat
aj = (%E)s = speed of fir;t sound
o 22’
“TETh T

NOTE: The coefficient of thermal expansion is assumed to be negligible,
which implies that entropy is a function only of temperature and density

is a function only of pressure. Also under this assumption, the specific

heat ratio is equal to unity.
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When this is done, all the dissioative terms will disappear because
they depend only on derivatives, which are zero in the equilibrium states.
Carrying out this procedure on the momentum, superfluid and total energy

shock equations, yields the following set:

U2

S =
(6) (-a—io-)Ap | =0

u2 P

1 S no 4
(7) 56—-(1 e : ) Ap - SqAT + 7;;-Us AW =0
(8) (s°+C)AT--p-$1$T +u2‘_)"_°.é!=o
; o Pno 0'o s| oo Us

For a nontrivial solution to exist the determinate of the coefficients of
Ap, AT, and Aw must vanish. This requirement yields the following

characteristic equation:

u2 s§T
(9) (1 . a%o) (::: Co° ¥ Ug) = 0

therefore:

U, = :an

or Us = taIIo

where the second sound speed has been.defined as:

(10) _¥%s s21
g | | v;; 3

The result of this linearized analysis is simply to find steady
first and second sound waves. Since a coordinate system in which the

wave was assumed steady has been used throughout, only steady sound or




n f:‘-‘“‘-‘_"“ﬁ&

W

shock waves can be found. This first result is not a shock wave since
there is no nonlinear steepening involved.
Using the second sound speed result in equation (8) yields the

following relation:

p
= -—n =
(11) AT ("s )o US aw , for Us 2110
which can also be written as:
Aw _ (o C -
(12) U (p . ) o » for U, 210
S 0

—II>
'

where ¢ =
(i}

Substituting this result into equation (7) reveals that the pressure
Jump, Ap, is zero to this level of approximation. Thus the pressure
Jjump in a second sound wave must be of order w2 or higher? The only
first order quantities in second sound waves will therefore be fluctu-
ations of entropy, temperature, relative velocity, and normal fluid

fraction (pn/p).

* This statement must be modified when the coefficient of thermal expansion
cannot be neglected. In that case the pressure jump will be of order w
times the coefficient of thermal expansion which is still small, although

not negligible.

iy ,:N;“ "", Voo e "-"f‘."m*‘i,"";.‘r',ﬂ'v.' ;_}‘ﬂy_'

o T AN

i

- A



-97-

IV. SOLVING FOR THE JUMP CONDITIONS AND SHOCK VELOCITY

When solving the shock equations to order wz for second sound it is
useful to use the equations of Table 4, since terms involving pressure and

3

density are order w°. These equations expanded in terms of T' and w are:

(13) (;?L Ugw - SoT' = ( ) we - £y T'Usw
+(*‘|:')o -q-.—)- +g—-h+0(w3)

(1) o1 - (GEsTh = - 3 B (1) s [_ () - sie] 1 3
S

1|°s P '
-7['0— + (f;TET)]o (‘,—n)o w? +;2u—s+;—+0(w3) :

The dissipative terms similarily expanded but restricted to second sound
shocks are:

dw

(15) X-h-=- (—-—+ - 2, + 023, (—)o ax + 0wd)
" T = x_dT
(16) b%lz + ; = - Bo—us'a; + 0('3)

From the first order solutions for second sound (see Eq. 12):

900
W= —-—U— T"'O(T)
This expression may be substituted into the second order termms of
equations (13) thru (16) to eliminate w, since the error involved will be
of third order. This substitution may not be made into the first order
terms however, so there will still be a 1inear dependence of w in the two

shock equations. The result of this simplification is the following set

oy —

J S T T —'mvv‘""‘-* N e

# L | ¢ 4 ’ Tl i B n
SN 1 ~<,§,_‘. i L2 '.‘




——— e — e e e e e, e o — e ———

-98-

of four equations:
°n : S C p 12 T
(17) (o Ugw - soT' = () [2 ¢ - (EE-TET) g S e ok

p a?
SIS W oo Lo 100 b1 ,C 1 ,TaC
(18)  CGT' - (2 sT), g [+ > (¢ 59)

.p S
(19) ;— _h:_\(in+£z._2€l+p;3k (..s___ _dl
ns

(20) B o | ok
P

Finally w can be eliminated by multiplying thru equation (17) by (T/s),
and equation (18) by (T/C), (Us/aIIo)z’ and adding. The result is:
02
5 Kkl C 1 I?.E 2 _n .P_ 12
0

v [Yer e em (5)0]

Note when writing down the dissipative terms use was made of the fact that
these terms are of order w2 and that Ui equals ailo plus a correction of
order w.

From this point the jump equations can be simply solved by létting
T'+ AT and by noting that the dissipative terms disappear because two

equilibrium states are being used.
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U2 -
& Late Fl.alC 1 .16 35 L3 AT
(22)(;?; D=13+35-7G5 z(psﬂ) (pnTsT)]To—
i 0

[ » c
. ;r — log(aII —T-)]0 ]
This yields Khalatnikov's well known second sound shock velocity formula3:

¢ 1
(23) i = far (1+ 5 bg8)

where b(p,T) is a thermodynamic function defined by:

(28) b(p,T)= T %1' Tog (a3 %)

This solution to shock velocity can be substituted into equation (17)
to yield a second order result for the relative velocity jump. Equation

(17) rewritten as a jump equation and solving for aw is:

(25) Aw (ps)o To AT [ & (2 T \
—— = _ - — E
a1 5? Us A1 T ]

but from equation (22):

e e
U Pl s
S 1o

which substituted into equation (25) yields:
(26)-ﬂ-—=-(-°—-c-)09{1+ [2—**(T )+(3“-1)( Tc)-l]e}
Pe S T

a“o
T 1.9 C (e
— (p 5)06{1 + > T —a-—T—[log a” i (ps)z]e}

S

e 1 G R B —

- e - e —————— .
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V. SHOCK STRUCTURE SOLUTION

The shock structure can now be solved directly from equation (21)

which is rewritten below:

U2
(27) e L TE = Bl PP
1o

©

To

K. S . 2 dar
+ T [C + - (3 n+cy - 201z, o Cg)}o >

This equation can be rearranged with the aid of the shock velocity

result to the following nondimensional form:

(28) dl . 1. T2

dy
-k
where T E B
by
y = E?EE—I;- X
(29) A(p,T) = p—a%;— [ KE+ g—: (%n * 5~ ot ¢ 02«:3)]

Equation (28) and the entire analysis which preéeded, are valid only for
weak shock waves; that is, the shock strength, ¢, must be much smaller
than unity.

The remaining question that needs to be answered before solving
equation (28) concerns whether quadratic or just linear terms are required
to balance the differential term. The shock layer is a very narrow part
of the entire shock solution when expressed in the nondimensional variable

y; therefore it is useful to rewrite the equation in stretched
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coordinates as follows: 1

Set y sﬂ%)—

Define f(y) such that:

T(y) = T(y ¢(8)) = ef(y) - ‘

Note that ¢(6), which is a measure of the shock thickness, is some unknown

function of the shock strength. Also note, that the new dependent i
variable is magnified by some function of the shock strength which in

this case must be 8 itself. With these substitutions equation (28) i
becomes:

8 df _ 2¢ _ a2¢2
(30) m)-dy 02f - g2f

Clearly in order to balance the differential term, both the linear and
quadratic terms are required since they are of the same order in the
small parameter 6. Also, the shock thickness must be inversely propor-

tional to the shock strength:

-
(31) ¥ o

Finally equation (30) can be solved for f(y) to yield:

(32) f(y) = % + ?1- tanh g

When the original variables are resubstituted the shock structure is i
found to be:

2X

(33)  Tx) = 3 (T, +To) + 3 (T, - Tp) tamn 2

e ——— . A o o S S ——— — ikt
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The profile of a second sound shock wave given by equation (33) has
the same shape as an ordinary pressure shock profile for weak shock waves.
Also the form of the shock thickness, &, is totally analogous to the
ordinary weak shock case which has been calculated by Landau4. In both
cases the shock thickness is inversely proportional to the shock strength--
in the second sound shock case this parameter is the temperature jump
divided by the temperature of the initial rest state. Also in both cases
the shock thickness includes a thermodynamic coefficient whose sign
determines whether the shock is a compression or expansion. For ordinary
pressure shocks this coefficient is the "fundamental derivative of gas
dynamics", (azplavz)s, (where V is specific volume). For the second sound
case this coefficient is the thermodynamic function b(p,T) defined by
equation (24).

The analogy is made complete by the constant terms of proportionality
which are equal to the absorption of sound per frequency squared.

Kha]atnikovshas shown that the absorption of second sound is given by:

1 Ps (4
oail C Pn 3 2 1 3
thus
(36) A= 3

At first thought such a complete analogy between ordinary pressur:
shock waves and temperature shock waves in a superfluid may seem surprising

since the basic equations of motion as well as the thermodynamics of He II

s et .t — - e — e e
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are very different from those of an ordinary fluid. This analogy how-
ever is not a coincidence, but is due to the fact that ia both cases the
steady profile of a shock wave is due to a balance of the nonlinear
steepening effects by dissipative mechanisms. Furthermore it can be
shown quite generally, that when a steady wave is formed by balancing
nonlinear steepening with some dissipative process-whether it be heat
conduction, viscosity, or diffusion,--the resuit will be a shock wave
whose thickness is inversely proportional to the shock strength.

As stated previously, there are two basic types of second sound
shock waves--temperature raising and temperature lowering--whose
occurrence depends on the sign of b(p,T). As saturated vapor pressure
and for a temperature above 1.88°K b{p,T) is negative (see figure 1);
in this region temperature lowering shocks occur. Below 1.88%K to about
0.9%, b(p,T) is positive, which requires that second sound shock waves
be temperature raising in nature.

A curious phenomenon happens where b(p,T) passes thru zero. Here
the shock thickness diverges as a simple pole because b(p,T) resides in
the denominator of & (see Eq. 34). A plot of the shock thickness,
normalized by w, is included as figure 2. It should be remarked that
near the infinity in shock thickness the'analysis is strictly valid only
for infinitisimal shock strengths, that is for e + 0. This is because
the first order correction to the wave velocity, %b(p,T)e, becomes zero
at this point making higher order terms importaht. However the existence
of the infinity will not disappear, but only be shifted in temperature

by a higher order analysis. The reason this must happen is directly
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related to the fact that the shock velocity must equal the characteristic
velocities, both in front and back of the shock, at some temperature

and amplitude, 6. When this happens there is no energy feeding the

shock front, which dictates that a steady profile can only be maintained
if the wave is dissipationless. This can only occur if the gradients
vanish; that is, the shock thickness must become infinite.

Near temperatures where b(p,T) = 0 the shock thickness will become
relatively large thch will aid experimental investigations of the shock
structure. However, to get a larger shock thickness requires a longer
time for the shock to steepen into a steady state. With this constraint
in mind, the shock thickness could be adequately measured and hence

compared with the theoretical value.

B e G it
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Figure 1. The thermodynamic function b(p,T) at SVP.
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